skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Winters, Christopher"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Intertidal environments receive energy from marine ecosystems in the form of marine wrack, which makes up the base of a food web that includes both intertidal and terrestrial consumers. Consumption of wrack by terrestrial consumers can elevate their abundance and alter how they interact with organisms in adjacent terrestrial environments. Although rarely documented, terrestrial invaders may exploit marine wrack subsides and potentially disrupt intertidal and terrestrial food webs. Here, we examine consumption of marine wrack resources by the introduced Argentine ant (Linepithema humile), which occurs commonly on beaches in southern California. In controlled trials the Argentine ant readily scavenged arthropod detritivores (amphipods and flies) abundant in wrack. In spite of obvious risks (e.g., exposure to tides, desiccation, thermal stress) associated with intertidal foraging, Argentine ant activity on beaches was comparable to that in spatially-paired, scrub environments. Foraging on beaches allowed ants to access higher densities of arthropod prey and carrion compared to those found in scrub environments. Stable isotope analyses provide evidence for extensive assimilation of marine-derived resources. Values of δ15N and δ13C for the Argentine ant were higher at beach sites than at scrub sites, and Argentine ant δ15N values broadly overlapped those of intertidal consumers at beach sites. Although ants are known to forage in intertidal environments, this study provides a novel example of an introduced ant species exploiting a cross-boundary subsidy. 
    more » « less